Subseafloor sedimentary life in the South Pacific Gyre.

نویسندگان

  • Steven D'Hondt
  • Arthur J Spivack
  • Robert Pockalny
  • Timothy G Ferdelman
  • Jan P Fischer
  • Jens Kallmeyer
  • Lewis J Abrams
  • David C Smith
  • Dennis Graham
  • Franciszek Hasiuk
  • Heather Schrum
  • Andrea M Stancin
چکیده

The low-productivity South Pacific Gyre (SPG) is Earth's largest oceanic province. Its sediment accumulates extraordinarily slowly (0.1-1 m per million years). This sediment contains a living community that is characterized by very low biomass and very low metabolic activity. At every depth in cored SPG sediment, mean cell abundances are 3 to 4 orders of magnitude lower than at the same depths in all previously explored subseafloor communities. The net rate of respiration by the subseafloor sedimentary community at each SPG site is 1 to 3 orders of magnitude lower than the rates at previously explored sites. Because of the low respiration rates and the thinness of the sediment, interstitial waters are oxic throughout the sediment column in most of this region. Consequently, the sedimentary community of the SPG is predominantly aerobic, unlike previously explored subseafloor communities. Generation of H(2) by radiolysis of water is a significant electron-donor source for this community. The per-cell respiration rates of this community are about 2 orders of magnitude higher (in oxidation/reduction equivalents) than in previously explored anaerobic subseafloor communities. Respiration rates and cell concentrations in subseafloor sediment throughout almost half of the world ocean may approach those in SPG sediment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global distribution of microbial abundance and biomass in subseafloor sediment.

The global geographic distribution of subseafloor sedimentary microbes and the cause(s) of that distribution are largely unexplored. Here, we show that total microbial cell abundance in subseafloor sediment varies between sites by ca. five orders of magnitude. This variation is strongly correlated with mean sedimentation rate and distance from land. Based on these correlations, we estimate glob...

متن کامل

High frequency of phylogenetically diverse reductive dehalogenase-homologous genes in deep subseafloor sedimentary metagenomes

Marine subsurface sediments on the Pacific margin harbor diverse microbial communities even at depths of several hundreds meters below the seafloor (mbsf) or more. Previous PCR-based molecular analysis showed the presence of diverse reductive dehalogenase gene (rdhA) homologs in marine subsurface sediment, suggesting that anaerobic respiration of organohalides is one of the possible energy-yiel...

متن کامل

Carbon and nitrogen assimilation in deep subseafloor microbial cells.

Remarkable numbers of microbial cells have been observed in global shallow to deep subseafloor sediments. Accumulating evidence indicates that deep and ancient sediments harbor living microbial life, where the flux of nutrients and energy are extremely low. However, their physiology and energy requirements remain largely unknown. We used stable isotope tracer incubation and nanometer-scale seco...

متن کامل

Controls on Microbial Communities in Deeply Buried Sediments, Eastern Equatorial Pacific and Peru Margin

Ocean Drilling Program Leg 201 was the first ocean drilling expedition dedicated to the study of life deep beneath the seafloor. Its seven sites were selected to represent the general range of subsurface environments that exist in marine sediments throughout most of the world’s oceans. In water depths as great as 5300 m and as shallow as 150 m, the expedition drilled as deep as 420 m into ocean...

متن کامل

A Westward-Intensified Decadal Change in the North Pacific Thermocline and Gyre-Scale Circulation

From the early 1970s to the mid-1980s, the main thermocline of the subarctic gyre of the North Pacific Ocean shoaled with temperatures at 200–400-m depth cooling by 18–48C over the region. The gyre-scale structure of the shoaling is quasi-stationary and intensified in the western part of the basin north of 308N, suggesting concurrent changes in gyre-scale transport. A similar quasi-stationary c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 106 28  شماره 

صفحات  -

تاریخ انتشار 2009